Swim extends the actor model to support applications composed of linked distributed actors that continuously analyze boundless streams of events from millions of sources, to respond in-sync with the real-world. Swim builds a running application from streaming events, creating a distributed dataflow graph of linked, stateful, concurrent streaming actors that is overlaid on a mesh of runtime instances. Streaming actors are vertices in the dataflow graph that concurrently analyze new events and modify their states. A link is an edge in the graph and is a URI binding to an actor's streaming API. The Swim runtime streams every actor state change over its links to other (possibly remote) actors using op-based CRDTs that asynchronously update remotely cached actor state replicas. This frees local actors to compute at any time, using the latest replicas of remote state. Actors evaluate parametric functions, including geospatial, analytical, and predictive, to discover new relationships and forge or break links, dynamically adapting the dataflow graph to model the changing real-world. Swim applications are tiny, robust and resource efficient, and remain effortlessly in-sync with the real-world, analyzing, learning, and predicting on-the-fly.


翻译:Swim 构建了一个运行中的应用程序。 Swim 构建了一个来自流流事件的运行应用程序, 创建了一个分布式数据流图, 覆盖在运行时间的网格上。 流动的行为体是数据流图中的悬崖, 同时分析新事件并修改其状态。 链接是图中的边缘, 是一个URI 连接到一个行为体流动的 API 。 每一个行为体的流动时间流都通过流动事件运行, 创建了一个运行中的应用程序, 创建了一个运行中的流动程序, 创建了一个分布式数据流图, 并创建了一个运行式的流动程序, 并与其他( 可能是远程的) 运行的行为体连接。 这让本地行为体可以随时进行编译, 使用最新的远程状态复制版 。 行为方评估参数功能, 包括地理空间、 分析和预测, 以发现新的关系和断开链接, 动态地将数据流图转换到不断变化的现实世界中。 Swamilling and folorlest- train- train to the real- listal- lishal- lishal- sligal- sal- ligal- sal andst

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年7月11日
Arxiv
0+阅读 · 2022年7月9日
Arxiv
54+阅读 · 2022年1月1日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员