For large-scale data fitting, the least-squares progressive iterative approximation is a widely used method in many applied domains because of its intuitive geometric meaning and efficiency. In this work, we present a randomized progressive iterative approximation (RPIA) for the B-spline curve and surface fittings. In each iteration, RPIA locally adjusts the control points according to a random criterion of index selections. The difference for each control point is computed concerning the randomized block coordinate descent method. From geometric and algebraic aspects, the illustrations of RPIA are provided. We prove that RPIA constructs a series of fitting curves (resp., surfaces), whose limit curve (resp., surface) can converge in expectation to the least-squares fitting result of the given data points. Numerical experiments are given to confirm our results and show the benefits of RPIA.
翻译:对于大型数据安装而言,最小平方的累进迭代近似值是许多应用领域广泛使用的一种方法,因为它具有直观的几何意义和效率。 在这项工作中,我们为B-spline曲线和表面配件提出了一个随机的累进迭代近似值(RPIA)。在每次迭代中,RPIA根据指数选择的随机标准对控制点进行局部调整。每个控制点的差别是在随机区块协调下游方法上计算出来的。从几何和代数方面来看,提供了RPIA的图解。我们证明,RPIA建造了一系列的安装曲线(重新铺设、表面),其极限曲线(表面)可以与特定数据点最不合适的结果相容。提供了数字实验,以确认我们的结果并展示RPIA的效益。