Ensemble pruning is the process of selecting a subset of componentclassifiers from an ensemble which performs at least as well as theoriginal ensemble while reducing storage and computational costs.Ensemble pruning in data streams is a largely unexplored area ofresearch. It requires analysis of ensemble components as they arerunning on the stream, and differentiation of useful classifiers fromredundant ones. We present CCRP, an on-the-fly ensemble prun-ing method for multi-class data stream classification empoweredby an imbalance-aware fusion of class-wise component rankings.CCRP aims that the resulting pruned ensemble contains the bestperforming classifier for each target class and hence, reduces the ef-fects of class imbalance. The conducted experiments on real-worldand synthetic data streams demonstrate that different types of en-sembles that integrate CCRP as their pruning scheme consistentlyyield on par or superior performance with 20% to 90% less averagememory consumption. Lastly, we validate the proposed pruningscheme by comparing our approach against pruning schemes basedon ensemble weights and basic rank fusion methods.


翻译:共选线是从组合中选择一组元分类器的过程。 该组合件在减少存储和计算成本的同时至少和原始组合件同时进行至少和原始组合件。 在数据流中集合运行是一个基本上没有探索的研究领域。 它要求对流上运行的共选元件进行分析,并将有用的分类器与冗余数据流区分开来。 我们展示了CCRP, 这是一种在飞行上混合的多级数据流分类方法, 一种通过分类分级分级的不平衡- 认知组合增强能力。 CPR 的目标是, 由此形成的组合件包含每个目标类的最佳分类器, 从而降低阶级不平衡的缺陷。 在真实世界和合成数据流上进行的实验表明, 将CCRP 整合成其平均或超强性运行方案的不同类型, 以20%至90%的平均消耗量为基础。 最后, 我们通过比较我们基于基本排序方法的精度和加权方法, 来验证拟议的平整制方法。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
61+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【五分钟学AI】模型融合model ensemble
七月在线实验室
4+阅读 · 2017年10月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【五分钟学AI】模型融合model ensemble
七月在线实验室
4+阅读 · 2017年10月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员