Following the outbreak of a global pandemic, online content is filled with hate speech. Donald Trump's ''Chinese Virus'' tweet shifted the blame for the spread of the Covid-19 virus to China and the Chinese people, which triggered a new round of anti-China hate both online and offline. This research intends to examine China-related hate speech on Twitter during the two years following the burst of the pandemic (2020 and 2021). Through Twitter's API, in total 2,172,333 tweets hashtagged #china posted during the time were collected. By employing multiple state-of-the-art pretrained language models for hate speech detection, we identify a wide range of hate of various types, resulting in an automatically labeled anti-China hate speech dataset. We identify a hateful rate in #china tweets of 2.5% in 2020 and 1.9% in 2021. This is well above the average rate of online hate speech on Twitter at 0.6% identified in Gao et al., 2017. We further analyzed the longitudinal development of #china tweets and those identified as hateful in 2020 and 2021 through visualizing the daily number and hate rate over the two years. Our keyword analysis of hate speech in #china tweets reveals the most frequently mentioned terms in the hateful #china tweets, which can be used for further social science studies.


翻译:全球疫情爆发后, 网上内容充满了仇恨言论。 Donald Trump 的“ 中国病毒”推文将Covid-19病毒传播到中国和中国人民,这引发了新一轮在线和离线反华仇恨。 这项研究的目的是在疫情爆发( 2020年和2021年) 后的两年内, 审视推特上与中国有关的仇恨言论。 通过Twitter的API, 收集了2 172 333个推特标签上贴在时段张贴的#china。 通过使用多种最先进的预先培训语言模式来检测仇恨言论, 我们发现了多种类型的仇恨, 导致自动标出反中国仇恨言论的在线和网络数据。 我们发现在2020年和2021年的#china推特上, 与中国有关的仇恨言论的仇恨率高达2.5%, 2021年的1.9%。 这远远高于2017年加奥等人所发现的Twitter上的网络仇恨言论的平均比率 0.6 % 。 我们进一步分析了#china 推文推文的长度发展以及2020年和2021年被确认为仇恨的各类语言模式的网络。 的Trifrison 分析中, 我们的每日的仇恨程度的Trison 数据和最新分析经常被引用的Trison 。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员