There are still many challenges of emotion recognition using physiological data despite the substantial progress made recently. In this paper, we attempted to address two major challenges. First, in order to deal with the sparsely-labeled physiological data, we first decomposed the raw physiological data using signal spectrum analysis, based on which we extracted both complexity and energy features. Such a procedure helped reduce noise and improve feature extraction effectiveness. Second, in order to improve the explainability of the machine learning models in emotion recognition with physiological data, we proposed Light Gradient Boosting Machine (LightGBM) and SHapley Additive exPlanations (SHAP) for emotion prediction and model explanation, respectively. The LightGBM model outperformed the eXtreme Gradient Boosting (XGBoost) model on the public Database for Emotion Analysis using Physiological signals (DEAP) with f1-scores of 0.814, 0.823, and 0.860 for binary classification of valence, arousal, and liking, respectively, with cross-subject validation using eight peripheral physiological signals. Furthermore, the SHAP model was able to identify the most important features in emotion recognition, and revealed the relationships between the predictor variables and the response variables in terms of their main effects and interaction effects. Therefore, the results of the proposed model not only had good performance using peripheral physiological data, but also gave more insights into the underlying mechanisms in recognizing emotions.


翻译:尽管最近取得了巨大进展,但利用生理数据来认识情感,这方面仍然存在许多挑战。在本文件中,我们试图应对两大挑战。首先,为了处理标记不多的生理数据,我们首先使用信号频谱分析对原始生理数据进行分解,我们根据这种分析提取了复杂性和能量特征。这种程序有助于减少噪音,提高特征提取效力。第二,为了改进机器学习模型在情感识别中与生理数据相比的情感识别的可解释性,我们提议轻度增压机器(LightGBM)和Shanapley Additive Explations (SHAP)分别用于情感预测和模型解释。首先,为了处理标记不多的生理数据数据数据,我们首先利用光度GHBM模型模型(XGBM)模型(XGBoost)模型(XGBO)利用信号分析复杂性和能量特性分析了情感分析公共数据库(DEAP)的原始信号(F1核心信号为0.814、0.823和0.860),我们提议对价值、振奋度和感知度的二元分类分别进行交叉校准验证,并使用八个周边生理信号信号信号信号信号信号信号信号信号信号信号。此外,SHAP模型模型模型模型(SHAP模型)模型模型模型模型模型(SHIS变的模型)模型(HAFRI反应)模型(SV)模型(SVIF)模型)模型(S)模型(SV)模型(S)模型)模型(SV)模型(SV)模型(SV)模型(SV)的功能(SDFIFIFIFIFL)中,也得以在预测和S)中揭示了它们(S)中显示了它们的主要变量(SVD)中,在预测和动作(SVD)中显示了它们的主要变量(SD)中,在预测和动作(SVDF)中,在预测和最重要的功能反应反应)中,也只能变数变数中,在预测和最重要关系(SVDFIFVDFDFLVD)中,也只是中,在确认了。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员