Massive Machine-Type Communications (mMTC) is a key service category in the current generation of wireless networks featuring an extremely high density of energy and resource-limited devices with sparse and sporadic activity patterns. In order to enable random access in such mMTC networks, base station needs to identify the active devices while operating within stringent access delay constraints. In this paper, an energy efficient active device identification protocol is proposed in which active devices transmit On-Off Keying (OOK) modulated preambles jointly and base station employs non-coherent energy detection avoiding channel estimation overheads. The minimum number of channel-uses required by the active user identification protocol is characterized in the asymptotic regime of total number of devices $\ell$ when the number of active devices $k$ scales as $k=\Theta(1)$ along with an achievability scheme relying on the equivalence of activity detection to a group testing problem. Several practical schemes based on Belief Propagation (BP) and Combinatorial Orthogonal Matching Pursuit (COMP) are also proposed. Simulation results show that BP strategies outperform COMP significantly and can operate close to the theoretical achievability bounds. In a partial-recovery setting where few misdetections are allowed, BP continues to perform well.


翻译:为了能够随机进入这种MMTC网络,基地站需要确定在严格的准入延迟限制下运行的活性装置。在本文中,提议了一个节能主动装置识别协议,让活动设备联手和基地站使用不兼容的能源探测,避免频道估计间接费用。 模拟结果显示,当活动装置的数量达到美元/日塔(1)美元时,在活动探测与群体测试问题等值的情况下,部分用户识别协议所需的频道使用量最低为美元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日元/日/日元/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/月/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日/日</s>

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
0+阅读 · 2023年5月2日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员