This paper proposes a framework to guide an optical flow network with external cues to achieve superior accuracy either on known or unseen domains. Given the availability of sparse yet accurate optical flow hints from an external source, these are injected to modulate the correlation scores computed by a state-of-the-art optical flow network and guide it towards more accurate predictions. Although no real sensor can provide sparse flow hints, we show how these can be obtained by combining depth measurements from active sensors with geometry and hand-crafted optical flow algorithms, leading to accurate enough hints for our purpose. Experimental results with a state-of-the-art flow network on standard benchmarks support the effectiveness of our framework, both in simulated and real conditions.
翻译:本文提出了一个框架来指导光学流动网络,让外部提示在已知或无形领域达到更高的准确性。 鉴于外部来源的光学流动提示很少,但准确的光学流动提示很准确,因此它们被注入用于调整由最先进的光学流动网络计算的相关分数,并指导其实现更准确的预测。 虽然没有真正的传感器能够提供流动提示,但我们展示了如何通过将活性传感器的深度测量与几何和手制光学流动算法相结合来获得这些提示,从而为我们的目的提供足够准确的提示。 在标准基准基准上使用最先进的流网络的实验结果支持了我们框架的有效性,无论是在模拟条件下还是在真实条件下都是如此。