An important challenge in robotics is understanding the interactions between robots and deformable terrains that consist of granular material. Granular flows and their interactions with rigid bodies still pose several open questions. A promising direction for accurate, yet efficient, modeling is using continuum methods. Also, a new direction for real-time physics modeling is the use of deep learning. This research advances machine learning methods for modeling rigid body-driven granular flows, for application to terrestrial industrial machines as well as space robotics (where the effect of gravity is an important factor). In particular, this research considers the development of a subspace machine learning simulation approach. To generate training datasets, we utilize our high-fidelity continuum method, material point method (MPM). Principal component analysis (PCA) is used to reduce the dimensionality of data. We show that the first few principal components of our high-dimensional data keep almost the entire variance in data. A graph network simulator (GNS) is trained to learn the underlying subspace dynamics. The learned GNS is then able to predict particle positions and interaction forces with good accuracy. More importantly, PCA significantly enhances the time and memory efficiency of GNS in both training and rollout. This enables GNS to be trained using a single desktop GPU with moderate VRAM. This also makes the GNS real-time on large-scale 3D physics configurations (700x faster than our continuum method).
翻译:机器人的一个重要挑战是了解由颗粒材料组成的机器人和变形地形之间的相互作用。 颗粒流及其与僵硬体体的相互作用仍然提出几个开放的问题。 准确而高效的建模有希望的方向是使用连续方法。 此外, 实时物理建模的新方向是使用深层学习。 这一研究推进了模拟硬体驱动颗粒流的机器学习方法,用于地面工业机器和空间机器人(重力影响是一个重要的因素)。 特别是, 这项研究考虑开发一个子空间机器学习模拟方法。 为了生成培训数据集,我们使用高纤维连续法、材料点法(MPM),这是很有希望的方向。 主要组成部分分析(PCA)用于减少数据的维度。 我们表明,我们高空间数据的最初几个主要组成部分几乎保持了数据的全部差异。 一个图形网络模拟器(GNS) 正在接受培训, 以学习基础的亚空间动态。 然后, 学习过的GNS 能够以较中度的精确度预测粒子位置和互动力。 更重要的是, CPA 利用一个经过训练的连续式GPO 使G- massal 能够大大提升时间和G- g- g- sal- sal- be 和G- sal- train- be agradustrual 进行G- sal acal ag- sal