This paper demonstrates the use of machine learning to detect the presence of intermodulation interference across several wireless carriers. We show a salient characteristic of intermodulation interference and propose a machine learning based algorithm that detects the presence of intermodulation interference through the use of supervised learning. This algorithm can use the radio access network intelligent controller or the sixth generation of wireless communication (6G) edge node as a means of computation. Our proposed algorithm runs in linear time in the number of resource blocks, making it a suitable radio resource management application in 6G.
翻译:本文展示了利用机器学习来探测若干无线载体存在相互调制干扰的特征。我们展示了相互调制干扰的显著特征,并提出了一个基于机器学习的算法,通过使用监督的学习来检测是否存在相互调制干扰。这种算法可以使用无线电接入网络智能控制器或第六代无线通信(6G)边缘节点作为计算手段。我们提议的算法在资源区块数量上以线性时间运行,在6G中使之成为适当的无线电资源管理应用程序。