In practice, the use of rounding is ubiquitous. Although researchers have looked at the implications of rounding continuous random variables, rounding may be applied to functions of discrete random variables as well. For example, to infer on suicide difference between two time periods, authorities may provide a rounded average of deaths for each period. Suicide rates tend to be relatively low around the world and such rounding may seriously affect inference on the change of suicide rate. In this paper, we study the scenario when a rounded to nearest integer average is used to estimate a non-negative discrete random variable. Specifically, our interest is in drawing inference on a parameter from the pmf of Y, when we get U=n[Y/n]as a proxy for Y. The probability generating function of U, E(U), and Var(U) capture the effect of the coarsening of the support of Y. Also, moments and estimators of distribution parameters are explored for some special cases. Under certain conditions, there is little impact from rounding. However, we also find scenarios where rounding can significantly affect statistical inference as demonstrated in two applications. The simple methods we propose are able to partially counter rounding error effects.


翻译:实际上,四舍五入的使用无处不在。虽然研究人员已经研究了四舍五入连续随机变量的影响,但四舍五入也可以适用于离散随机变量的功能。例如,为了推断两个时期之间的自杀差异,当局可以提供每个时期的四舍五入平均死亡数。自杀率在世界各地一般相对较低,这种四舍五入可能会严重影响对自杀率变化的推断。此外,在本文中,我们研究使用四舍五入至最接近的整数平均数来估计非负异离散随机变量的假设。具体地说,我们的兴趣是从Y的pmf中推断一个参数,当我们得到U=n[Y/n]作为Y的代理时。U、E(U)和Var(U)的概率生成功能可以捕捉到Y支持的混乱效应的影响。此外,对于某些特殊案例,我们探索了分配参数的瞬间和估计因素。在某些条件下,四舍五入的影响很小。我们还发现,在两种应用中,四舍五入可以对统计误差产生显著的影响。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
65+阅读 · 2021年8月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月5日
Arxiv
0+阅读 · 2021年9月5日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
65+阅读 · 2021年8月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员