Solving large-scale nonlinear minimization problems is computationally demanding. Nonlinear multilevel minimization (NMM) methods explore the structure of the underlying minimization problem to solve such problems in a computationally efficient and scalable manner. The efficiency of the NMM methods relies on the quality of the coarse-level models. Traditionally, coarse-level models are constructed using the additive approach, where the so-called $\tau$-correction enforces a local coherence between the fine-level and coarse-level objective functions. In this work, we extend this methodology and discuss how to enforce local coherence between the objective functions using a multiplicative approach. Moreover, we also present a hybrid approach, which takes advantage of both, additive and multiplicative, approaches. Using numerical experiments from the field of deep learning, we show that employing a hybrid approach can greatly improve the convergence speed of NMM methods and therefore it provides an attractive alternative to the almost universally used additive approach.
翻译:大规模非线性最小化(NMM)方法在计算上要求大量解决非线性最小化问题。非线性多层次最小化(NMM)方法探索潜在最小化问题的结构,以便以可计算、高效和可扩展的方式解决此类问题。NMM方法的效率取决于粗略模型的质量。传统上,粗略的模型是使用添加法构建的,所谓的美元-成本-纠正法在微调和粗略水平目标功能之间实施了本地一致性。在这项工作中,我们推广了这种方法,并讨论如何使用倍增效应方法在目标函数之间实现本地一致性。此外,我们还提出了一个混合方法,利用复数和倍增法两种方法。我们从深层学习领域进行的数字实验表明,采用混合法可以大大提高NMM方法的趋同速度,因此,它为几乎普遍使用的叠加法提供了有吸引力的替代方法。