Acoustic sensing manifests great potential in various applications that encompass health monitoring, gesture interface and imaging by leveraging the speakers and microphones on smart devices. However, in ongoing research and development in acoustic sensing, one problem is often overlooked: the same speaker, when used concurrently for sensing and other traditional applications (like playing music), could cause interference in both making it impractical to use in the real world. The strong ultrasonic sensing signals mixed with music would overload the speaker's mixer. To confront this issue of overloaded signals, current solutions are clipping or down-scaling, both of which affect the music playback quality and also sensing range and accuracy. To address this challenge, we propose CoPlay, a deep learning based optimization algorithm to cognitively adapt the sensing signal. It can 1) maximize the sensing signal magnitude within the available bandwidth left by the concurrent music to optimize sensing range and accuracy and 2) minimize any consequential frequency distortion that can affect music playback. In this work, we design a deep learning model and test it on common types of sensing signals (sine wave or Frequency Modulated Continuous Wave FMCW) as inputs with various agnostic concurrent music and speech. First, we evaluated the model performance to show the quality of the generated signals. Then we conducted field studies of downstream acoustic sensing tasks in the real world. A study with 12 users proved that respiration monitoring and gesture recognition using our adapted signal achieve similar accuracy as no-concurrent-music scenarios, while clipping or down-scaling manifests worse accuracy. A qualitative study also manifests that the music play quality is not degraded, unlike traditional clipping or down-scaling methods.
翻译:暂无翻译