Hyperparameter tuning in machine learning algorithms is a computationally challenging task due to the large-scale nature of the problem. In order to develop an efficient strategy for hyper-parameter tuning, one promising solution is to use swarm intelligence algorithms. Artificial Bee Colony (ABC) optimization lends itself as a promising and efficient optimization algorithm for this purpose. However, in some cases, ABC can suffer from a slow convergence rate or execution time due to the poor initial population of solutions and expensive objective functions. To address these concerns, a novel algorithm, OptABC, is proposed to help ABC algorithm in faster convergence toward a near-optimum solution. OptABC integrates artificial bee colony algorithm, K-Means clustering, greedy algorithm, and opposition-based learning strategy for tuning the hyper-parameters of different machine learning models. OptABC employs these techniques in an attempt to diversify the initial population, and hence enhance the convergence ability without significantly decreasing the accuracy. In order to validate the performance of the proposed method, we compare the results with previous state-of-the-art approaches. Experimental results demonstrate the effectiveness of the OptABC compared to existing approaches in the literature.
翻译:机器学习算法的超强参数调制是一项计算上具有挑战性的任务,因为问题的规模很大。为了制定超强参数调制的有效战略,一个大有希望的解决办法是使用群温智能算法。人工蜂窝优化(ABC)本身就是一种有希望和有效率的优化算法。然而,在某些情况下,ABC由于最初的解决方案和昂贵的客观功能数量较少,其趋同率或执行时间可能较慢。为了解决这些问题,建议采用新的算法(OptABC)帮助ABC算法更快地趋同近最佳解决办法。OptABC结合人工蜂巢算法、K-Means集群、贪婪算法和反对派学习战略,以调整不同机器学习模型的超参数。OptABC采用这些技术,试图使初始人口多样化,从而增强趋同能力,同时又不显著降低准确性。为了验证拟议方法的性能,我们建议将结果与先前的状态方法进行比较,我们比较了OABC方法与以前的文献比较。