XORNet-based low power controller is a popular technique to reduce circuit transitions in scan-based testing. However, existing solutions construct the XORNet evenly for scan chain control, and it may result in sub-optimal solutions without any design guidance. In this paper, we propose a novel testability-aware low power controller with evolutionary learning. The XORNet generated from the proposed genetic algorithm (GA) enables adaptive control for scan chains according to their usages, thereby significantly improving XORNet encoding capacity, reducing the number of failure cases with ATPG and decreasing test data volume. Experimental results indicate that under the same control bits, our GA-guided XORNet design can improve the fault coverage by up to 2.11%. The proposed GA-guided XORNets also allows reducing the number of control bits, and the total testing time decreases by 20.78% on average and up to 47.09% compared to the existing design without sacrificing test coverage.
翻译:以 XORNet 为基础的低功率控制器是一种常用技术,可以减少扫描测试中的电路转换。 但是,现有的解决方案可以平均地为扫描链控制而构建 XORNet, 并可能导致在没有任何设计指导的情况下产生亚最佳的解决方案。 在本文中, 我们提出一个新的测试性低功率控制器, 进行进化学习。 由拟议的遗传算法( GA) 生成的 XORNet 能够根据扫描链的用法进行适应性控制, 从而显著提高 XORNet 编码能力, 减少ATPG 的故障案例数量, 并减少测试数据量。 实验结果显示, 在同一控制点下, 我们的 GA 制导 XORNet 设计可以将故障覆盖率提高2.11%。 拟议的 GA 制导 XORNet 还可以减少控制位数, 并且总测试时间平均减少20.78%, 并且比现有设计减少47.09%, 但不牺牲测试范围。