Federated Learning (FL) is expected to play a prominent role for privacy-preserving machine learning (ML) in autonomous vehicles. FL involves the collaborative training of a single ML model among edge devices on their distributed datasets while keeping data locally. While FL requires less communication compared to classical distributed learning, it remains hard to scale for large models. In vehicular networks, FL must be adapted to the limited communication resources, the mobility of the edge nodes, and the statistical heterogeneity of data distributions. Indeed, a judicious utilization of the communication resources alongside new perceptive learning-oriented methods are vital. To this end, we propose a new architecture for vehicular FL and corresponding learning and scheduling processes. The architecture utilizes vehicular-to-vehicular(V2V) resources to bypass the communication bottleneck where clusters of vehicles train models simultaneously and only the aggregate of each cluster is sent to the multi-access edge (MEC) server. The cluster formation is adapted for single and multi-task learning, and takes into account both communication and learning aspects. We show through simulations that the proposed process is capable of improving the learning accuracy in several non-independent and-identically-distributed (non-i.i.d) and unbalanced datasets distributions, under mobility constraints, in comparison to standard FL.


翻译:联邦学习联合会(FL)预计将在自发车辆中的隐私保存机器学习(ML)方面发挥突出作用。FL涉及在其分布式数据集的边缘设备中合作培训单一ML模型,同时保留当地的数据。FL要求的通信比传统分布式学习少,但对于大型模型来说仍然难以推广。在车辆网络中,FL必须适应有限的通信资源、边缘节点的流动性和数据分布的统计差异性。事实上,明智地利用通信资源以及新的感知式学习方法至关重要。为此,我们提出一个新的通用FL结构,以及相应的学习和排期进程。虽然FL要求与传统分布式学习相比通信较少,但对于大型模型来说,F2V资源仍然难以推广。FL必须适应于通信瓶颈,因为车辆集群同时培训模型,而每个组群的总数被送到多接入端服务器。集群的形成适应于单一和多任务学习,并考虑到通信和学习两个方面。我们通过模拟、不平稳的分布,显示在不平稳的分布中,在不平稳和不稳定的分配中,我们通过模拟、不稳定的、不稳定的分析,显示不稳定的分配过程,在不稳定的、不稳定的分配中,在不稳定的分配中,在不稳定的分配中,在不稳定的分配中显示不稳定的、不稳定的分配中,在不稳定的、不稳定的分配中,在不稳定的分配中,在不稳定的分配中显示不稳定的、不稳定的分配中,在不稳定的、不稳定的分配中显示不稳定的、不稳定的分配过程。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员