Watermarking is the procedure of encoding desired information into an image to resist potential noises while ensuring the embedded image has little perceptual perturbations from the original image. Recently, with the tremendous successes gained by deep neural networks in various fields, digital watermarking has attracted increasing number of attentions. The neglect of considering the pixel importance within the cover image of deep neural models will inevitably affect the model robustness for information hiding. Targeting at the problem, in this paper, we propose a novel deep watermarking scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism to endow different importance to different pixels. With the proposed method, the model is able to spotlight pixels with more robustness for embedding data. Besides, from an orthogonal point of view, in order to increase the model embedding capacity, we propose a complementary message coding module. Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets under multiple settings.
翻译:水标记是将理想信息编码成图像以抵制潜在噪音的程序,同时确保嵌入的图像与原始图像没有多少感知干扰。 最近,随着深神经网络在各个领域取得的巨大成功,数字水标记吸引了越来越多的注意力。 忽视深神经模型封面图像中的像素重要性将不可避免地影响信息隐藏的模型的稳健性。 在本文中,我们提出了与反梯度注意(IGA)一道的新的深水标记方案,将对抗性学习和关注机制的理念与不同像素的不同重要性进行梳理。 采用拟议方法,该模型能够以更坚固的嵌入数据聚焦像素。 此外,从一个或多角度的观点来看,为了增加模型嵌入能力,我们提议了一个补充信息编码模块。 随机而广泛的实验显示,拟议的模型超越了多个环境中两种流行数据集的状态方法。