An increasing number of systems are being designed by first gathering significant amounts of data, and then optimizing the system parameters directly using the obtained data. Often this is done without analyzing the dataset structure. As task complexity, data size, and parameters all increase to millions or even billions, data summarization is becoming a major challenge. In this work, we investigate data summarization via dictionary learning, leveraging the properties of recently introduced non-negative kernel regression (NNK) graphs. Our proposed NNK-Means, unlike competing techniques, such askSVD, learns geometric dictionaries with atoms that lie in the input data space. Experiments show that summaries using NNK-Meanscan provide better discrimination compared to linear and kernel versions of kMeans and kSVD. Moreover, NNK-Means has a scalable implementation, with runtime complexity similar to that of kMeans.


翻译:通过首先收集大量数据,然后直接利用获得的数据优化系统参数,从而设计出越来越多的系统。 通常在不分析数据集结构的情况下这样做。 由于任务的复杂性、数据大小和参数都增加到数百万甚至数十亿,数据总和正在成为一个重大挑战。 在这项工作中,我们通过字典学习来调查数据总化,利用最近引入的非负内核回归图的特性。 我们提议的NNK-Means与相互竞争的技术不同,例如问SVD, 学习输入数据空间中的原子的几何词典。 实验显示,使用NNK-Meanscan的摘要比 kMeans 和 kSVD 的线性和内核版本提供了更好的区别。 此外, NNK-Means 具有可缩放的功能,运行时间的复杂性类似于 kMeans 。

0
下载
关闭预览

相关内容

【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
已删除
将门创投
4+阅读 · 2020年1月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月6日
Arxiv
6+阅读 · 2021年10月25日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员