Many learning tasks require observing a sequence of images and making a decision. In a transportation problem of designing and planning for shipping boxes between nodes, we show how to treat the network of nodes and the flows between them as images. These images have useful structural information that can be statistically summarized. Using image compression techniques, we reduce an image down to a set of numbers that contain interpretable geographic information that we call geographic signatures. Using geographic signatures, we learn network structure that can be utilized to recommend future network connectivity. We develop a Bayesian reinforcement algorithm that takes advantage of statistically summarized network information as priors and user-decisions to reinforce an agent's probabilistic decision.
翻译:许多学习任务要求观察一系列图像并作出决定。在设计和规划节点之间运输箱的运输问题中,我们展示了如何将节点网络和它们之间的流动作为图像对待。这些图像具有有用的结构信息,可以进行统计总结。使用图像压缩技术,我们将图像减少到包含可解释的地理信息的一组数字,我们称之为地理签名。使用地理签名,我们学习网络结构,可以用来建议未来的网络连通性。我们开发一种巴伊西亚强化算法,利用统计汇总的网络信息作为先行和用户决定来强化代理人的概率决定。