We study the accuracy of estimating the covariance and the precision matrix of a $D$-variate sub-Gaussian distribution along a prescribed subspace or direction using the finite sample covariance. Our results show that the estimation accuracy depends almost exclusively on the components of the distribution that correspond to desired subspaces or directions. This is relevant and important for problems where the behavior of data along a lower-dimensional space is of specific interest, such as dimension reduction or structured regression problems. We also show that estimation of precision matrices is almost independent of the condition number of the covariance matrix. The presented applications include direction-sensitive eigenspace perturbation bounds, relative bounds for the smallest eigenvalue, and the estimation of the single-index model. For the latter, a new estimator, derived from the analysis, with strong theoretical guarantees and superior numerical performance is proposed.
翻译:我们用有限的样本共差法,研究在规定的子空间或方向上估计美元-变差亚加西安子空间的共差分布和精确矩阵的准确性,结果显示,估计的准确性几乎完全取决于分布中与所希望的子空间或方向相对应的组成部分,对于在低维空间上的数据行为具有具体兴趣的问题,例如尺寸减缩或结构回归问题,这具有相关性和重要性。我们还表明,精确矩阵的估算几乎与共差矩阵的条件号无关。提出的应用包括方向敏感性电子空间扰动界限,最小电子元值的相对界限,以及单指数模型的估计。对于后者,提出了从分析中得出的新的估计值,有很强的理论保证和较高的数字性能。