We study the problem of clustering networks whose nodes have imputed or physical positions in a single dimension, such as prestige hierarchies or the similarity dimension of hyperbolic embeddings. Existing algorithms, such as the critical gap method and other greedy strategies, only offer approximate solutions. Here, we introduce a dynamic programming approach that returns provably optimal solutions in polynomial time -- O(n^2) steps -- for a broad class of clustering objectives. We demonstrate the algorithm through applications to synthetic and empirical networks, and show that it outperforms existing heuristics by a significant margin, with a similar execution time.
翻译:我们研究集群网络的问题,这些网络的节点在单一的层面,如威望等级或双曲嵌入的相似层面,其点被推算或物理位置被推算或物理位置。现有的算法,如关键差距方法和其他贪婪战略,只能提供大概的解决办法。在这里,我们引入动态的编程方法,在多米时间 -- -- O(n)2步骤 -- -- 中,为广泛的组合目标类别找到可以想象的最佳解决办法。我们通过对合成和经验网络的应用,展示了算法,并表明它大大超越了现有的超常,执行时间相似。