We introduce a pivot for exact selective inference with randomization. Not only does our pivot lead to exact inference in Gaussian regression models, but it is also available in closed form. We reduce the problem of exact selective inference to a bivariate truncated Gaussian distribution. By doing so, we give up some power that is achieved with approximate inference in Panigrahi and Taylor (2022). Yet we always produce narrower confidence intervals than a closely related data-splitting procedure. For popular instances of Gaussian regression, this price -- in terms of power -- in exchange for exact selective inference is demonstrated in simulated experiments and in an HIV drug resistance analysis.
翻译:我们引入了精确选择性随机推断的轴线。 我们的轴线不仅导致高斯回归模型的精确推断, 而且它也以封闭的形式存在。 我们减少精确选择性推断的问题, 将精确选择性推论变成双轨变差高斯分布。 这样我们放弃一些在帕尼格拉希和泰勒( 2022年) 中大致推论所实现的能量。 但我们总是产生比密切相关的数据分割程序更窄的置信间隔。 对于高斯回归的流行例子, 模拟实验和艾滋病毒抗药性分析显示这种价格 -- -- 以权力作为交换精确选择性推论的交换条件。</s>