Voice conversion for highly expressive speech is challenging. Current approaches struggle with the balancing between speaker similarity, intelligibility and expressiveness. To address this problem, we propose Expressive-VC, a novel end-to-end voice conversion framework that leverages advantages from both neural bottleneck feature (BNF) approach and information perturbation approach. Specifically, we use a BNF encoder and a Perturbed-Wav encoder to form a content extractor to learn linguistic and para-linguistic features respectively, where BNFs come from a robust pre-trained ASR model and the perturbed wave becomes speaker-irrelevant after signal perturbation. We further fuse the linguistic and para-linguistic features through an attention mechanism, where speaker-dependent prosody features are adopted as the attention query, which result from a prosody encoder with target speaker embedding and normalized pitch and energy of source speech as input. Finally the decoder consumes the integrated features and the speaker-dependent prosody feature to generate the converted speech. Experiments demonstrate that Expressive-VC is superior to several state-of-the-art systems, achieving both high expressiveness captured from the source speech and high speaker similarity with the target speaker; meanwhile intelligibility is well maintained.


翻译:高显性语音转换具有挑战性。 目前的方法与声音相似性、可知性和直观性之间的平衡相争。 为了解决这一问题,我们提出“ 表达- VC ”,这是一个新的端对端语音转换框架,它利用神经瓶颈特征(BNF)方法和信息扰动方法的优势。 具体地说,我们使用BNF编码器和 Perturbed-Wav 编码器组成内容提取器,分别学习语言和准语言特征,BNF来自强有力的预先训练的ASR模型,而周遭的波在信号渗透后变得与语音相关。 我们进一步通过关注机制整合语言和准语言特征,在关注机制中采用依赖语器的侧写特征作为关注问题查询方法。 我们使用目标发言者嵌入和正统化的音调和源语力作为输入。 最后,解调器消耗了综合特征和依赖语器的侧写性特征以生成转换的演讲。 实验表明,Exprive-VC具有高压性,其表达性与高压性与高压性,同时实现了高压。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员