The category Set* of sets and partial functions is well-known to be traced monoidal, meaning that a partial function S+U -/-> T+U can be coherently transformed into a partial function S -/-> T. This transformation is generally described in terms of an implicit procedure that must be run. We make this procedure explicit by enriching the traced category in Cat#, the symmetric monoidal category of categories and cofunctors: each hom-category has such procedures as objects, and advancement through the procedures as arrows. We also generalize to traced Kleisli categories beyond Set*, providing a conjectural trace operator for the Kleisli category of any polynomial monad of the form t+1. The main motivation for this work is to give a formal and graphical syntax for performing sophisticated computations powered by graph rewriting, which is itself a graphical language for data transformation.
翻译:暂无翻译