Forest roads in Romania are unique natural wildlife sites used for recreation by countless tourists. In order to protect and maintain these roads, we propose RovisLab AMTU (Autonomous Mobile Test Unit), which is a robotic system designed to autonomously navigate off-road terrain and inspect if any deforestation or damage occurred along tracked route. AMTU's core component is its embedded vision module, optimized for real-time environment perception. For achieving a high computation speed, we use a learning system to train a multi-task Deep Neural Network (DNN) for scene and instance segmentation of objects, while the keypoints required for simultaneous localization and mapping are calculated using a handcrafted FAST feature detector and the Lucas-Kanade tracking algorithm. Both the DNN and the handcrafted backbone are run in parallel on the GPU of an NVIDIA AGX Xavier board. We show experimental results on the test track of our research facility.
翻译:罗马尼亚的森林道路是供无数游客娱乐的独特自然野生生物场所。为了保护和维护这些道路,我们提议设立RovisLab AMTU(自动移动测试单位),这是一个机器人系统,旨在自主地巡视越野地形,并检查沿履带路线发生的任何毁林或破坏情况。AMTU的核心组成部分是其嵌入的视觉模块,为实时环境感知优化。为了实现高计算速度,我们使用一个学习系统来培训多任务深海神经网络(DNN),用于对物体进行现场和实例分割,同时进行本地化和绘图所需的关键点则使用手工制作的FAST特征探测器和卢卡斯-Kanade跟踪算法计算。DNN和手工艺的脊骨在VVIDIA AGXavier 董事会的GPU上平行运行。我们展示了我们研究设施测试轨道上的实验结果。