Effective congestion control for data center networks is becoming increasingly challenging with a growing amount of latency sensitive traffic, much fatter links, and extremely bursty traffic. Widely deployed algorithms, such as DCTCP and DCQCN, are still far from optimal in many plausible scenarios, particularly for tail latency. Many operators compensate by running their networks at low average utilization, dramatically increasing costs. In this paper, we argue that we have reached the practical limits of end-to-end congestion control. Instead, we propose, implement, and evaluate a new congestion control architecture called Backpressure Flow Control (BFC). BFC provides per-hop per-flow flow control, but with bounded state, constant-time switch operations, and careful use of buffers. We demonstrate BFC's feasibility by implementing it on a state-of-the-art P4-based programmable hardware switch. In simulation, we show that BFC achieves near optimal throughput and tail latency behavior even under challenging conditions such as high network load and incast cross traffic. Compared to existing end-to-end schemes, BFC achieves 2.3 - 60 X lower tail latency for short flows and 1.6 - 5 X better average completion time for long flows.


翻译:数据中心网络的有效拥堵控制正日益变得日益具有挑战性,因为潜伏敏感交通量、脂肪链路和异常交通量越来越多。广泛部署的算法,如DCTCP和DCQCN,在许多合理的情景中仍然远远不尽理想,特别是尾部悬浮。许多操作员通过运行其网络而以低平均利用率进行补偿,费用急剧增加。在本文中,我们争辩说,我们已达到端到端的拥堵控制的实际限度。相反,我们提议、实施和评估一个新的阻塞控制结构,即回压流动控制(BFC)。BFC提供每股一次流量控制,但有封闭状态、固定时间开关操作和谨慎使用缓冲。我们通过在最先进的P4程序型硬件开关上实施BFC,我们证明BFC即使在高网络负荷和跨流量等具有挑战性的条件下,也几乎实现了最佳的过量和尾拖拉行为。与现有的端-端流动计划相比,BFC实现2.3 - 60 X 低尾部平均完成时间5。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2020年10月9日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员