Arterial blood flow, dam or ship construction and numerous other problems in biomedical and general engineering involve incompressible flows interacting with elastic structures. Such interactions heavily influence the deformation and stress states which, in turn, affect the design. Consequently, any reliable model of such physical processes must consider the coupling of fluids and solids. However, complexity increases for non-Newtonian fluids, such as blood or polymer melts. In these fluids, subtle differences in the local shear-rate can have a drastic impact on the flow. Existing numerical solution strategies devised for Newtonian fluids are either not applicable or ineffective in such scenarios. To address these shortcomings, we present here a higher-order accurate, added-mass-stable fluid-structure interaction scheme centered around a split-step fluid solver. We compare several implicit and semi-implicit variants of the algorithm and verify convergence in space and time. Numerical examples show good performance in both benchmarks and a realistic setting of blood flow through an abdominal aortic aneurysm.
翻译:动脉血液流动、大坝或船舶建造以及生物医学和一般工程的许多其他问题涉及与弹性结构相互作用的不可压流,这种相互作用严重影响变形和压力状态,进而影响设计。因此,任何可靠的物理过程模型都必须考虑流体和固体的结合。然而,非纽顿流体的复杂性增加,如血液或聚合物融化。在这些流体中,当地剪裁率的细微差异会对流体产生巨大影响。为牛顿流体设计的现有数字解决方案战略在这种情况下不是不适用就是无效。为了解决这些缺陷,我们在此提出一个以分步液体溶液为核心的更高级的准确的、添加质量稳定的流体结构互动计划。我们比较了算法的若干隐含的和半隐含的变体,并核实在空间和时间上的汇合。数字实例显示,在基准方面表现良好,并且通过腹膜动脉动脉动进行血液流的现实环境。