Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based on graph signal filters, and some models able to learn arbitrary spectral filters have emerged recently. However, few works analyze the expressive power of spectral GNNs. This paper studies spectral GNNs' expressive power theoretically. We first prove that even spectral GNNs without nonlinearity can produce arbitrary graph signals and give two conditions for reaching universality. They are: 1) no multiple eigenvalues of graph Laplacian, and 2) no missing frequency components in node features. We also establish a connection between the expressive power of spectral GNNs and Graph Isomorphism (GI) testing which is often used to characterize spatial GNNs' expressive power. Moreover, we study the difference in empirical performance among different spectral GNNs with the same expressive power from an optimization perspective, and motivate the use of an orthogonal basis whose weight function corresponds to the graph signal density in the spectrum. Inspired by the analysis, we propose JacobiConv, which uses Jacobi polynomial basis due to their orthogonality and flexibility to adapt to a wide range of weight functions. JacobiConv deserts nonlinearity while outperforming all baselines on both synthetic and real-world datasets.


翻译:光谱 GNNs 的表达力。 我们首先证明光谱 GNNs 没有非线性, 也能产生任意的图形信号, 并给出实现普遍性的两个条件。 它们是:(1) 图形 Laplacecian 的不多个电子值, 以及(2) 节点特性中没有缺失的频率组件。 我们还在光谱 GNNs 和图形形态学测试的表达力之间建立起了联系, 后者通常用来描述空间GNNs 的表达力。 此外, 我们从优化角度研究不同光谱GNNNNs 的实验性表现差异, 这些光谱GNNs具有相同的表达力, 并激励使用其重量函数与光谱中图形信号密度相匹配的某个或多级基础。 根据分析, 我们建议Jacobi Convon, 使用Cocobi 的多级多级和形态学测试来描述空间 GNNNNPs 的表达力, 并同时调整其真实性、 水平 和 水平 水平 和 水平 水平, 和 水平 水平 水平 和 水平 水平 水平 水平 和 水平 水平 的 水平 的 水平 和 水平 的 水平 的 和 水平 的 的 水平 和 水平 的 水平 的 和 的 水平 的 水平 的 和 的 水平 的 的 的 的 的 的 和 的 的 水平 的 水平 的 和 的 的 的 和 的 的 的 的 的 和 的 水平 的 的 的 和 的 的 的 和 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 和 的 和 的 的 的 和 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 和 的 的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
21+阅读 · 2021年2月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员