Generalization error bounds measure the deviation of performance on unseen test data from performance on training data. However, by providing one scalar per model, they are input-agnostic. What if one wants to predict error for a specific test sample? To answer this, we propose the novel paradigm of input-conditioned generalization error bounds. For piecewise linear neural networks, given a weighting function that relates the errors of different input activation regions together, we obtain a bound on each region's generalization error that scales inversely with the density of training samples. That is, more densely supported regions are more reliable. As the bound is input-conditioned, it is to our knowledge the first generalization error bound applicable to the problems of detecting out-of-distribution and misclassified in-distribution samples for neural networks; we find that it performs competitively in both cases when tested on image classification tasks. When integrating the region-conditioned bound over regions, a model-level bound is obtained that implies models with fewer activation patterns, a higher degree of information loss or abstraction, generalize better.
翻译:通用误差 用于测量隐性测试数据性能与培训数据性能的偏差 。 但是, 通过提供每模型一个星标, 它们是输入- 不可知性 。 如果想要预测特定试样的错误, 如何回答这个问题? 为了回答这个问题, 我们建议了输入条件一般误差的新模式 。 对于小片线性神经网络, 其加权功能与不同输入激活区域的误差相关, 我们从每个区域的一般误差中获得一个约束, 该误差与培训样本的密度反差。 也就是说, 更密集的支持区域更可靠 。 由于该约束是输入条件, 因此我们知道第一个一般误差将适用于探测神经网络的分流和分配样本分类错误的问题 ; 我们发现, 在测试图像分类任务时, 它在两种情况下都具有竞争力 。 在将区域受限制的集成于区域时, 获得一个模型级界限, 意味着启动模式更少, 信息损失程度更高, 或抽象性更好 。