We propose a new overidentifying restriction test for linear instrumental variable models. The novelty of the proposed test is that it allows the number of covariates and/or instruments to be larger than the sample size and is robust to heteroskedastic errors. We show that the test has the desired theoretical properties under sparse high-dimensional models and is more powerful than existing overidentification tests. First, we introduce a test based on the maximum norm of multiple parameters that could be high-dimensional. The theoretical power based on the maximum norm is shown to be higher than that in the modified Cragg-Donald test (Koles\'{a}r, 2018), which is the only existing test allowing for large-dimensional covariates. Second, following the principle of power enhancement (Fan et al., 2015), we introduce the power-enhanced test, with an asymptotically zero component used to enhance the empirical power against some extreme alternatives with many locally invalid instruments. Focusing on hypothesis testing, we also provide a feasible estimator of endogenous effects for practitioners when instrument validity is not rejected. The simulation results show the superior performance of the proposed test, and the empirical power enhancement is clear. Finally, an empirical example of the trade and economic growth nexus demonstrates the usefulness of the proposed tests.
翻译:我们建议对线性工具变量模型进行新的超度限制测试。 拟议的测试的新颖之处在于允许共变数和/或仪器的数量大于样本规模,并且能够产生恒星误差。 我们显示,该测试在稀疏高维模型下具有理想的理论属性,并且比现有超度测试更强。 首先, 我们引入基于可能具有高度的多重参数最大规范的测试。 基于最大规范的理论力量比修改的克拉格-唐纳德测试(Koles\'{a}r,2018年)中的理论力量要高一些, 后者是允许大维共变数的唯一现有测试。 其次, 根据增强能力的原则(Fan等人,2015年), 我们引入了增强力的测试, 使用无源的零元素来增强对许多本地无效工具的极端替代工具的经验性能力。 聚焦于假设测试, 我们还提供了在仪器有效性不被否定时对从业人员的内生效应进行可行的估计。 模拟结果显示, 增强经济增长的先进性测试, 最后是拟议的实验性测试, 展示了拟议经济增长的先进性关系。</s>