Graph neural networks have triggered a resurgence of graph-based text classification methods, defining today's state of the art. We show that a simple multi-layer perceptron (MLP) using a Bag of Words (BoW) outperforms the recent graph-based models TextGCN and HeteGCN in an inductive text classification setting and is comparable with HyperGAT in single-label classification. We also run our own experiments on multi-label classification, where the simple MLP outperforms the recent sequential-based gMLP and aMLP models. Moreover, we fine-tune a sequence-based BERT and a lightweight DistilBERT model, which both outperform all models on both single-label and multi-label settings in most datasets. These results question the importance of synthetic graphs used in modern text classifiers. In terms of parameters, DistilBERT is still twice as large as our BoW-based wide MLP, while graph-based models like TextGCN require setting up an $\mathcal{O}(N^2)$ graph, where $N$ is the vocabulary plus corpus size.
翻译:图形神经网络引发了基于图形的文本分类方法的重新出现,定义了当今的艺术状态。 我们显示,使用一袋文字的简单多层光谱(MLP)在感化文本分类设置中优于最近的基于图形的模型TextGCN和HeteGCN, 并在单一标签分类中与超GAT可比。 我们还在多标签分类方面进行了自己的实验, 简单的 MLP 超越了最近基于顺序的GMLP 和 AMLP 模型。 此外, 我们微调了一个基于序列的 BERT 和轻量的 DistillBERT 模型, 这两种模型在大多数数据集中都优于所有单标签和多标签设置的模型。 这些结果质疑现代文本分类中使用的合成图形的重要性。 在参数方面, dittillBERT 仍然比我们的基于博瓦的宽度 MLP 高出一倍, 而基于图形的模型, 如 TextGCN 需要设置 $\mathcal{O} (N2) 。