We present a differentiable rigid-body-dynamics simulator for robotics that prioritizes physical accuracy and differentiability: Dojo. The simulator utilizes an expressive maximal-coordinates representation, achieves stable simulation at low sample rates, and conserves energy and momentum by employing a variational integrator. A nonlinear complementarity problem, with nonlinear friction cones, models hard contact and is reliably solved using a custom primal-dual interior-point method. The implicit-function theorem enables efficient differentiation of an intermediate relaxed problem and computes smooth gradients from the contact model. We demonstrate the usefulness of the simulator and its gradients through a number of examples including: simulation, trajectory optimization, reinforcement learning, and system identification.
翻译:我们为机器人提供了一个不同的僵硬体动力模拟器,该模拟器将物理准确性和差异性放在优先位置:Dojo。模拟器使用显性最大坐标代表器,以低样本率实现稳定的模拟,通过使用变式集成器节省能量和动力。一个非线性互补问题,使用非线性摩擦锥,模型硬接触,并且使用定制的初线性内部点方法可靠地解决。隐含功能定理能够有效地区分中间的放松问题,并计算接触模型的平滑梯度。我们通过若干例子,包括模拟、轨迹优化、强化学习和系统识别,展示了模拟器及其梯度的有用性。