Fine stratification is a popular design as it permits the stratification to be carried out to the fullest possible extent. Some examples include the Current Population Survey and National Crime Victimization Survey both conducted by the U.S. Census Bureau, and the National Survey of Family Growth conducted by the University of Michigan's Institute for Social Research. Clearly, the fine stratification survey has proved useful in many applications as its point estimator is unbiased and efficient. A common practice to estimate the variance in this context is collapsing the adjacent strata to create pseudo-strata and then estimating the variance, but the attained estimator of variance is not design-unbiased, and the bias increases as the population means of the pseudo-strata become more variant. Additionally, the estimator may suffer from a large mean squared error (MSE). In this paper, we propose a hierarchical Bayesian estimator for the variance of collapsed strata and compare the results with a nonparametric Bayes variance estimator. Additionally, we make comparisons with a kernel-based variance estimator recently proposed by Breidt et al. (2016). We show our proposed estimator is superior compared to the alternatives given in the literature such that it has a smaller frequentist MSE and bias. We verify this throughout multiple simulation studies and data analysis from the 2007-8 National Health and Nutrition Examination Survey and the 1998 Survey of Mental Health Organizations.


翻译:细分层调查是一种流行的设计,因为它允许尽可能最充分地进行分层调查,一些例子包括美国人口普查局进行的当前人口调查和全国犯罪受害情况调查,以及密歇根大学社会研究所进行的全国家庭增长调查。显然,细分层调查在许多应用中证明是有益的,因为其点测算器是公正和有效的。估计这方面差异的一个常见做法是,使邻近的阶层崩溃,以制造假比差,然后估计差异。但所达到的差异估计值并不是设计上无偏差,随着假成像的人口手段变得更加变异,偏差也会增加。此外,精细分层调查可能受到一个很大的中度正方差(MSE)的影响。在本文中,我们建议用一个等级的巴耶斯测算器来测量崩溃层的差异,并将结果与非对称的海湾差异估计器进行比较。 此外,我们比较最近提出的内心部差异估计仪的估测点不是设计上没有偏差,而是随着假成人口手段变得更为偏差增加。我们提议的1998至2005年全国健康选择性研究中,我们建议对1998年和2007年全国健康选择的多度分析结果进行了比较。我们提出的对1998年进行的估测测度调查。我们从全国健康的比较了比性分析。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员