Cross-sectional strategies are a classical and popular trading style, with recent high performing variants incorporating sophisticated neural architectures. While these strategies have been applied successfully to data-rich settings involving mature assets with long histories, deploying them on instruments with limited samples generally produces over-fitted models with degraded performance. In this paper, we introduce Fused Encoder Networks -- a hybrid parameter-sharing transfer ranking model. The model fuses information extracted using an encoder-attention module operated on a source dataset with a similar but separate module focused on a smaller target dataset of interest. In addition to mitigating the issue of target data scarcity, the model's self-attention mechanism enables interactions among instruments to be accounted for, not just at the loss level during model training, but also at inference time. Focusing on momentum applied to the top ten cryptocurrencies by market capitalisation as a demonstrative use-case, the Fused Encoder Networks outperforms the reference benchmarks on most performance measures, delivering a three-fold boost in the Sharpe ratio over classical momentum as well as an improvement of approximately 50% against the best benchmark model without transaction costs. It continues outperforming baselines even after accounting for the high transaction costs associated with trading cryptocurrencies.
翻译:跨部门战略是一种传统和流行的贸易风格,其最新高性能变异模式包含先进的神经结构。虽然这些战略成功地适用于涉及成熟资产且历史悠久的成熟资产的数据丰富环境,但将这些战略用于具有有限样品的仪器,通常会产生超合适且性能退化的模式。在本文中,我们引入了Fused Encoder Networks -- -- 一种混合参数共享传输排名模式。模型利用一个源数据集运行的编码器感应模块将信息融为一体,该模块以一个类似但独立的模块为主,侧重于一个较小的目标数据集。除了减轻目标数据稀缺的问题外,模型的自我注意机制还使得工具之间的互动能够被计算在内,不仅在模型培训期间,而且在推断时间里,不仅在损失水平上产生过大的模式。我们侧重于市场资本作为示范性使用案例对前十大密码性波动所应用的势头。 Fused Ecoder 网络超越了大多数性能计量的参照基准,在最小型目标数据集上提供了三重的提升。模型不仅在古典动力上,而且还使大约50 %的交易成本比最高基准交易成本。