Shortening acquisition time and reducing the motion-artifact are two of the most essential concerns in magnetic resonance imaging. As a promising solution, deep learning-based high quality MR image restoration has been investigated to generate higher resolution and motion artifact-free MR images from lower resolution images acquired with shortened acquisition time, without costing additional acquisition time or modifying the pulse sequences. However, numerous problems still exist to prevent deep learning approaches from becoming practical in the clinic environment. Specifically, most of the prior works focus solely on the network model but ignore the impact of various downsampling strategies on the acquisition time. Besides, the long inference time and high GPU consumption are also the bottle neck to deploy most of the prior works in clinics. Furthermore, prior studies employ random movement in retrospective motion artifact generation, resulting in uncontrollable severity of motion artifact. More importantly, doctors are unsure whether the generated MR images are trustworthy, making diagnosis difficult. To overcome all these problems, we employed a unified 2D deep learning neural network for both 3D MRI super resolution and motion artifact reduction, demonstrating such a framework can achieve better performance in 3D MRI restoration task compared to other states of the art methods and remains the GPU consumption and inference time significantly low, thus easier to deploy. We also analyzed several downsampling strategies based on the acceleration factor, including multiple combinations of in-plane and through-plane downsampling, and developed a controllable and quantifiable motion artifact generation method. At last, the pixel-wise uncertainty was calculated and used to estimate the accuracy of generated image, providing additional information for reliable diagnosis.


翻译:在磁共振成像中,缩小获取时间和减少运动-电动异常现象是两个最基本的问题。作为一种很有希望的解决办法,已经调查了深层次的学习基础高质量的MR图像恢复,以产生更高的分辨率和运动性、无艺术品的MR图像,这些图像来自获得时间缩短,获得时间缩短,获得时间不长,运动力不强。然而,在防止深层次学习方法在诊所环境中成为实际操作方面仍然存在许多问题。具体地说,大多数先前的工程都只关注网络模型,却忽视了各种下游战略对获取时间的影响。此外,长期的推断时间和高精度的GPU消费也是在诊所中部署大部分先前工作的瓶级不确定性。此外,先前的研究采用随机移动式运动力生成的图像,导致无法控制运动力的严格性。 更重要的是,医生无法确定生成的MRV图像是否可信,导致诊断困难。为了克服所有这些问题,我们采用了统一的2DMRI超级解析和运动减少工艺品的深度学习神经网络,表明这种框架在3DMRI修复过程中可以取得更好的表现,在3DMRI的加速度和高清晰度上,在恢复过程中可以实现更高的速度,在高度上进行更精确的加速的加速的加速的生成,在进行,在进行,在使用的方法上,在进行一系列的加速的加速的计算中,在进行一些的加速的计算方法上,在计算方法上提供了一种快速的加速的计算方法上,在进行,在计算方法上,在进行,在进行,在计算方法上,在计算方法上,在进行,在进行,在进行,在进行更多的加速的计算,在进行。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Top
微信扫码咨询专知VIP会员