We develop a Causal-Deep Neural Network (CDNN) model trained in two stages to infer causal impact estimates at an individual unit level. Using only the pre-treatment features in stage 1 in the absence of any treatment information, we learn an encoding for the covariates that best represents the outcome. In the $2^{nd}$ stage we further seek to predict the unexplained outcome from stage 1, by introducing the treatment indicator variables alongside the encoded covariates. We prove that even without explicitly computing the treatment residual, our method still satisfies the desirable local Neyman orthogonality, making it robust to small perturbations in the nuisance parameters. Furthermore, by establishing connections with the representation learning approaches, we create a framework from which multiple variants of our algorithm can be derived. We perform initial experiments on the publicly available data sets to compare these variants and get guidance in selecting the best variant of our CDNN method. On evaluating CDNN against the state-of-the-art approaches on three benchmarking datasets, we observe that CDNN is highly competitive and often yields the most accurate individual treatment effect estimates. We highlight the strong merits of CDNN in terms of its extensibility to multiple use cases.


翻译:我们开发了一个Causal-Deep神经网络(CDNNN)模型,该模型分两个阶段培训,以推断单个单位一级因果影响估计。在没有任何治疗信息的情况下,我们仅使用第一阶段的预处理特征,学习最能代表结果的共变体编码。在2 ⁇ nd}美元阶段,我们进一步寻求预测第1阶段无法解释的结果,在编码的共变体同时引入治疗指标变量。我们证明,即使没有明确计算治疗剩余值,我们的方法仍然满足了当地合适的Neyman或thocoality,使其在骚扰参数中能对小扰动产生强力。此外,我们通过与代表学习方法建立联系,我们建立了一个框架,从中可以得出我们算法的多种变式。我们在公开的数据集上进行了初步实验,以比较这些变式,并在选择我们的CDNNN方法的最佳变式时获得指导。在评估CDNNN在三个基准数据集上采用最先进的方法时,我们发现CDNNN具有很高的竞争力,而且常常产生最准确的个别治疗效果估计。我们强调CDNNN在CDN的极端的优点。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
2D Human Pose Estimation: A Survey
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员