Studies continually find that message-passing graph convolutional networks suffer from the over-smoothing issue. Basically, the issue of over-smoothing refers to the phenomenon that the learned embeddings for all nodes can become very similar to one another and therefore are uninformative after repeatedly applying message passing iterations. Intuitively, we can expect the generated embeddings become smooth asymptotically layerwisely, that is each layer of graph convolution generates a smoothed version of embeddings as compared to that generated by the previous layer. Based on this intuition, we propose RandAlign, a stochastic regularization method for graph convolutional networks. The idea of RandAlign is to randomly align the learned embedding for each node with that of the previous layer using randomly interpolation in each graph convolution layer. Through alignment, the smoothness of the generated embeddings is explicitly reduced. To better maintain the benefit yielded by the graph convolution, in the alignment step we introduce to first scale the embedding of the previous layer to the same norm as the generated embedding and then perform random interpolation for aligning the generated embedding. RandAlign is a parameter-free method and can be directly applied without introducing additional trainable weights or hyper-parameters. We experimentally evaluate RandAlign on different graph domain tasks on seven benchmark datasets. The experimental results show that RandAlign is a general method that improves the generalization performance of various graph convolutional network models and also improves the numerical stability of optimization, advancing the state of the art performance for graph representation learning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员