The accuracy and complexity of kernel learning algorithms is determined by the set of kernels over which it is able to optimize. An ideal set of kernels should: admit a linear parameterization (tractability); be dense in the set of all kernels (accuracy); and every member should be universal so that the hypothesis space is infinite-dimensional (scalability). Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not tractable or accurate; polynomials are not scalable. We propose a new class that meet all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a linear parameterization using positive matrices; is dense in all kernels; and every element in the class is universal. This implies that the use of TK kernels for learning the kernel can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL and parameters such as the bandwidth. Numerical testing on soft margin Support Vector Machine (SVM) problems show that algorithms using TK kernels outperform other kernel learning algorithms and neural networks. Furthermore, our results show that when the ratio of the number of training data to features is high, the improvement of TK over MKL increases significantly.
翻译:内核学习算法的准确性和复杂性由它能够优化的内核决定。 理想的内核应该: 接受线性参数化( 可选性) ; 在所有内核集中密度( 准确性) ; 每个成员都应该普遍性, 假设空间是无限的( 伸缩性) 。 目前, 没有一类符合所有三个标准的内核, 例如, 高斯 无法移动或准确; 多式内核是不可伸缩的 。 我们建议了一个新类, 符合所有三个标准 : 斜心内核( TK) 类 。 具体而言, 传统知识类: 接受使用正式内核的线性参数化参数化( 准确性); 每个成员都应该是普遍性的, 这样, 使用传统知识内核内核来学习内核( 简单MKL) 等算法和带宽等参数来选择候选内核内核。 我们的软边核结构测试( 泰瑟尔内核), 当使用正式的内核分析器系统显示我们高压的算时, 显示我们的内核的算法将显示我们高。