Recent investigations on rotation invariance for 3D point clouds have been devoted to devising rotation-invariant feature descriptors or learning canonical spaces where objects are semantically aligned. Examinations of learning frameworks for invariance have seldom been looked into. In this work, we review rotation invariance in terms of point cloud registration and propose an effective framework for rotation invariance learning via three sequential stages, namely rotation-invariant shape encoding, aligned feature integration, and deep feature registration. We first encode shape descriptors constructed with respect to reference frames defined over different scales, e.g., local patches and global topology, to generate rotation-invariant latent shape codes. Within the integration stage, we propose Aligned Integration Transformer to produce a discriminative feature representation by integrating point-wise self- and cross-relations established within the shape codes. Meanwhile, we adopt rigid transformations between reference frames to align the shape codes for feature consistency across different scales. Finally, the deep integrated feature is registered to both rotation-invariant shape codes to maximize feature similarities, such that rotation invariance of the integrated feature is preserved and shared semantic information is implicitly extracted from shape codes. Experimental results on 3D shape classification, part segmentation, and retrieval tasks prove the feasibility of our work. Our project page is released at: https://rotation3d.github.io/.
翻译:最近对3D点云的旋转变化情况的调查致力于设计旋转-变化特性描述符或学习孔径空间,这些天体是静态对齐的。对惯性学习框架的检查很少被研究。在这项工作中,我们从点云登记的角度审查旋转变化情况,并提议一个有效的框架,通过三个相继阶段,即旋转-变化形状编码、统一特征整合和深色特征登记,轮流-变化特征描述符之间的轮换变化情况。我们首先对根据不同尺度定义的参考框架(例如,地方补丁和全球表层)所构造的形状描述符进行了编码,以生成旋转-不变化潜在形状代码。在整合阶段,我们提议采用统一整合整合整合整合整合变异框架,通过整合在形状代码中建立的点自相和交叉关系,产生歧视性特征代表。同时,我们采用严格的参考框架来调整形状代码,以协调不同尺度的特征一致性。最后,即对旋转-变异特性生成的代码进行了深层集成集成,以产生最大的特征相似性特征,例如旋转-变异,在整合阶段,我们综合特性中的变异变换,3号中,我们实验化变换的变换的变换的模型是分级,我们的工作结构。我们分级化了我们的变换的模型。