This paper is concerned with the convergence analysis of two-level hierarchical basis (TLHB) methods in a general setting, where the decomposition associated with two hierarchical component spaces is not required to be a direct sum. The TLHB scheme can be regarded as a combination of compatible relaxation and coarse-grid correction. Most of the previous works focus on the case of exact coarse solver, and the existing identity for the convergence factor of exact TLHB methods involves a tricky max-min problem. In this work, we present a new and purely algebraic analysis of TLHB methods, which gives a succinct identity for the convergence factor of exact TLHB methods. The new identity can be conveniently utilized to derive an optimal interpolation and analyze the influence of coarse space on the convergence factor. Moreover, we establish two-sided bounds for the convergence factor of TLHB methods with inexact coarse solver, which extend the existing TLHB theory.
翻译:本文件涉及在一般情况下对两级等级基础(TLHB)方法的趋同性分析,在一般情况下,与两个等级组成部分空间有关的分解不需要直接总和。TLHB办法可被视为兼容的放松和粗格校正的组合。以前的工作大多侧重于精确粗略求解器的情况,而精确的TLHB方法的趋同系数的现有特性涉及一个棘手的最大问题。在这项工作中,我们提出了对TLHB方法的新的纯代数分析,为精确的TLHB方法的趋同系数提供了简明的特性。新的特性可以方便地用来得出最佳的内推法和分析粗格空间对趋同系数的影响。此外,我们为TLHB方法的趋同性系数与直角求解器建立了双向界限,扩展了现有的TLHB理论。