We explore recent progress and open questions concerning local minima and saddle points of the Cahn--Hilliard energy in $d\geq 2$ and the critical parameter regime of large system size and mean value close to $-1$. We employ the String Method of E, Ren, and Vanden-Eijnden -- a numerical algorithm for computing transition pathways in complex systems -- in $d=2$ to gain additional insight into the properties of the minima and saddle point. Motivated by the numerical observations, we adapt a method of Caffarelli and Spruck to study convexity of level sets in $d\geq 2$.
翻译:我们探讨最近的进展和公开的问题,涉及以2美元计算的卡恩-希利亚德能源的当地微型和马鞍点,以及大型系统规模和平均价值接近1美元的关键参数系统。我们采用了E、Ren和Vanden-Eijnden的弦法 -- -- 计算复杂系统中过渡路径的数字算法 -- -- 以2美元计,以进一步了解小型和马鞍点的特性。在数字观察的推动下,我们调整了Caffarelli和Spruck的方法,以研究以2美元计的平坦度。