Hyperspectral target detection is a pixel-level recognition problem. Given a few target samples, it aims to identify the specific target pixels such as airplane, vehicle, ship, from the entire hyperspectral image. In general, the background pixels take the majority of the image and complexly distributed. As a result, the datasets are weak annotated and extremely imbalanced. To address these problems, a spectral mixing based self-supervised paradigm is designed for hyperspectral data to obtain an effective feature representation. The model adopts a spectral similarity based matching network framework. In order to learn more discriminative features, a pair-based loss is adopted to minimize the distance between target pixels while maximizing the distances between target and background. Furthermore, through a background separated step, the complex unlabeled spectra are downsampled into different sub-categories. The experimental results on three real hyperspectral datasets demonstrate that the proposed framework achieves better results compared with the existing detectors.


翻译:超光谱目标检测是一个像素级的辨识问题。 在几个目标样本中, 它的目标是从整个超光谱图像中找出特定的目标像素, 如飞机、车辆、船舶等。 一般来说, 背景像素占图像的多数, 分布复杂。 因此, 数据集薄弱, 附加说明且极不平衡 。 为了解决这些问题, 基于自我监督的光谱混合模式是为超光谱数据设计的, 以获得有效的特征代表。 该模型采用了基于光谱相似性的匹配网络框架 。 为了了解更多的区别性特征, 采用了对等损失来尽量减少目标像素之间的距离, 同时尽可能扩大目标与背景之间的距离 。 此外, 通过背景分离的步骤, 复杂的未贴标签光谱被降为不同的子类。 三个真正的超光谱数据集的实验结果显示, 与现有的探测器相比, 拟议的框架取得了更好的结果 。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员