Hyperspectral target detection is a pixel-level recognition problem. Given a few target samples, it aims to identify the specific target pixels such as airplane, vehicle, ship, from the entire hyperspectral image. In general, the background pixels take the majority of the image and complexly distributed. As a result, the datasets are weak annotated and extremely imbalanced. To address these problems, a spectral mixing based self-supervised paradigm is designed for hyperspectral data to obtain an effective feature representation. The model adopts a spectral similarity based matching network framework. In order to learn more discriminative features, a pair-based loss is adopted to minimize the distance between target pixels while maximizing the distances between target and background. Furthermore, through a background separated step, the complex unlabeled spectra are downsampled into different sub-categories. The experimental results on three real hyperspectral datasets demonstrate that the proposed framework achieves better results compared with the existing detectors.
翻译:超光谱目标检测是一个像素级的辨识问题。 在几个目标样本中, 它的目标是从整个超光谱图像中找出特定的目标像素, 如飞机、车辆、船舶等。 一般来说, 背景像素占图像的多数, 分布复杂。 因此, 数据集薄弱, 附加说明且极不平衡 。 为了解决这些问题, 基于自我监督的光谱混合模式是为超光谱数据设计的, 以获得有效的特征代表。 该模型采用了基于光谱相似性的匹配网络框架 。 为了了解更多的区别性特征, 采用了对等损失来尽量减少目标像素之间的距离, 同时尽可能扩大目标与背景之间的距离 。 此外, 通过背景分离的步骤, 复杂的未贴标签光谱被降为不同的子类。 三个真正的超光谱数据集的实验结果显示, 与现有的探测器相比, 拟议的框架取得了更好的结果 。