We investigate the problem of multi-domain Dialogue State Tracking (DST) with open vocabulary. Existing approaches exploit BERT encoder and copy-based RNN decoder, where the encoder predicts the state operation, and the decoder generates new slot values. However, in such a stacked encoder-decoder structure, the operation prediction objective only affects the BERT encoder and the value generation objective mainly affects the RNN decoder. In this paper, we propose a purely Transformer-based framework, where a single BERT works as both the encoder and the decoder. In so doing, the operation prediction objective and the value generation objective can jointly optimize this BERT for DST. At the decoding step, we re-use the hidden states of the encoder in the self-attention mechanism of the corresponding decoder layers to construct a flat encoder-decoder architecture for effective parameter updating. Experimental results show that our approach substantially outperforms the existing state-of-the-art framework, and it also achieves very competitive performance to the best ontology-based approaches.


翻译:我们用开放词汇调查多域对话国跟踪(DST)问题。 现有的方法利用了 BERT 编码器和基于副本的 RNN 解码器, 编码器预测了国家运行, 解码器生成了新的时间段值。 但是, 在这种堆叠的编码器解码器结构中, 运行预测目标只影响 BERT 编码器, 而生成值的目标主要影响 RNN 解码器。 在本文中, 我们提议了一个纯基于变换器的框架, 由单一的BERT 来同时作为编码器和解码器。 在这样做时, 操作预测目标和生成值的目标可以共同优化 DST 的 BERT 。 在解码步骤中, 我们重新使用相应的解码器层自留机制中隐藏的编码器状态来构建一个用于有效更新参数的平坦的编码器解码器结构。 我们的实验结果表明, 我们的方法大大超越了现有的状态框架和解码器框架, 并且它也实现了最佳的顶有竞争力的业绩。

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
307+阅读 · 2020年11月26日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2018年11月5日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2019年8月22日
Bidirectional Attention for SQL Generation
Arxiv
4+阅读 · 2018年6月21日
VIP会员
相关VIP内容
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
307+阅读 · 2020年11月26日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Top
微信扫码咨询专知VIP会员