Conditional Generative Adversarial Networks (cGANs) have been used in many image processing tasks. However, they still have serious problems maintaining the balance between conditioning the output on the input and creating the output with the desired distribution based on the corresponding ground truth. The traditional cGANs, similar to most conventional GANs, suffer from vanishing gradients, which backpropagate from the discriminator to the generator. Moreover, the traditional cGANs are sensitive to architectural changes due to previously mentioned gradient problems. Therefore, balancing the architecture of the cGANs is almost impossible. Recently MSG-GAN has been proposed to stabilize the performance of the GANs by applying multiple connections between the generator and discriminator. In this work, we propose a method called MSGDD-cGAN, which first stabilizes the performance of the cGANs using multi-connections gradients flow. Secondly, the proposed network architecture balances the correlation of the output to input and the fitness of the output on the target distribution. This balance is generated by using the proposed dual discrimination procedure. We tested our model by segmentation of fetal ultrasound images. Our model shows a 3.18% increase in the F1 score comparing to the pix2pix version of cGANs.


翻译:许多图像处理任务中使用了有条件的生成辅助网络(cGANs),但是,它们仍然存在着严重的问题,难以保持在根据相应的地面真相对输入输出进行调节和以预期的分布进行输出之间保持平衡。传统的cGANs与大多数传统的GANs相似,其梯度会消失,这些梯度会从歧视者向生成器后退。此外,传统的cGANs对由于先前提到的梯度问题而导致的建筑变化十分敏感。因此,平衡cGAN的架构几乎是不可能的。最近,MSG-GAN提议通过在生成者和制导师之间应用多个连接来稳定GANs的性能。在这项工作中,我们提出了一种称为MSGDD-cGAN的方法,该方法首先用多连接梯度梯度梯度流来稳定cGANs的性能。第二,拟议的网络结构平衡了产出与输入的关联性和目标分布中输出的适合性。这一平衡是通过拟议的双重歧视程序产生的。我们通过将生成者和制成者之间的多个连接来稳定GANs的性能图象的模型。我们通过分化了FA181比化了FDDDDDIS的模型来测试了我们的图象。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2021年7月4日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
149+阅读 · 2020年12月30日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
201+阅读 · 2019年9月30日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员