Graph neural networks (GNNs) have significantly improved the representation power for graph-structured data. Despite of the recent success of GNNs, the graph convolution in most GNNs have two limitations. Since the graph convolution is performed in a small local neighborhood on the input graph, it is inherently incapable to capture long-range dependencies between distance nodes. In addition, when a node has neighbors that belong to different classes, i.e., heterophily, the aggregated messages from them often negatively affect representation learning. To address the two common problems of graph convolution, in this paper, we propose Deformable Graph Convolutional Networks (Deformable GCNs) that adaptively perform convolution in multiple latent spaces and capture short/long-range dependencies between nodes. Separated from node representations (features), our framework simultaneously learns the node positional embeddings (coordinates) to determine the relations between nodes in an end-to-end fashion. Depending on node position, the convolution kernels are deformed by deformation vectors and apply different transformations to its neighbor nodes. Our extensive experiments demonstrate that Deformable GCNs flexibly handles the heterophily and achieve the best performance in node classification tasks on six heterophilic graph datasets.


翻译:图形神经网络( GNNS) 大大改善了图形结构数据的显示力。 尽管GNNS最近取得了成功, 大部分GNS的图形变迁具有两个限制。 由于图形变迁是在输入图形上一个小地方附近进行的, 它天生无法捕捉距离节点之间的长期依赖性。 此外, 当一个节点的邻居属于不同类别时, 即杂乱地, 它们的汇总信息往往对演示学习产生负面的影响。 为了解决图形变迁的两个共同问题, 我们在本文件中建议, 可变形的图表变迁网络( 变形GCNs) 适应性地在多个潜在空间进行变迁, 并捕捉取节点之间的短/ 距离依赖性。 与节点表( 弱点) 分开, 我们的框架同时学习节点定位嵌入( 坐标), 以便确定结点在最终到最后的状态中的关系 。 根据节点位置, 我们提议变形的内核变变形网络( 变形式 GCN ), 并应用不同的变形性实验, 显示其最接近的G 变形 变形 。

0
下载
关闭预览

相关内容

【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
已删除
Arxiv
31+阅读 · 2020年3月23日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
15+阅读 · 2019年4月4日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
28+阅读 · 2018年4月6日
VIP会员
相关资讯
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
已删除
Arxiv
31+阅读 · 2020年3月23日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
15+阅读 · 2019年4月4日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
28+阅读 · 2018年4月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员