We present a new method for computing a smooth minimum distance function (based on the LogSumExp function) for point clouds, edge meshes, triangle meshes, and combinations of all three. We derive blending weights and a modified Barnes-Hut acceleration approach that ensure our method is conservative (points outside the zero isosurface are guaranteed to be outside the surface), accurate and efficient to evaluate for all the above data types. This, in combination with its ability to smooth sparsely sampled data, like point clouds, enhances typical graphics tasks such as sphere tracing and enables new applications such as direct, co-dimensional rigid body simulation using unprocessed lidar data.


翻译:我们提出了一个新的方法,用于计算点云、边缘梅舍、三角梅舍和所有三者组合的平滑最低距离函数(以LogSumExp函数为基础)。我们得出混合权重和经修改的Barnes-Hut加速法,确保我们的方法比较稳妥(保证在零异地表外的点在表面之外),准确和高效地评估所有上述数据类型。这与它光滑的稀有抽样数据(如点云)的能力相结合,加强了典型的图形任务,例如域追踪,并使得能够使用未经处理的里达尔数据进行直接的、共同的硬体模拟等新的应用。

0
下载
关闭预览

相关内容

跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员