Randomized smoothing is sound when using infinite precision. However, we show that randomized smoothing is no longer sound for limited floating-point precision. We present a simple example where randomized smoothing certifies a radius of $1.26$ around a point, even though there is an adversarial example in the distance $0.8$ and extend this example further to provide false certificates for CIFAR10. We discuss the implicit assumptions of randomized smoothing and show that they do not apply to generic image classification models whose smoothed versions are commonly certified. In order to overcome this problem, we propose a sound approach to randomized smoothing when using floating-point precision with essentially equal speed and matching the certificates of the standard, unsound practice for standard classifiers tested so far. Our only assumption is that we have access to a fair coin.
翻译:使用无限精确度时, 随机滑动是有道理的。 但是, 我们显示随机滑动已不再适合有限的浮点精确度。 我们提出了一个简单的例子, 就是随机滑动的半径为1. 26美元, 在一个点周围进行验证, 尽管距离为0. 8美元, 并且将这个例子扩大到为CIFAR10 提供假证书。 我们讨论了随机滑动的隐含假设, 并表明这些假设不适用于通用图象分类模型, 这些图象分类模型的平滑版本通常得到认证。 为了解决这一问题, 我们提出了一个合理的方法, 即使用基本上相等的速度的浮点精确度来随机滑动, 并且匹配标准证书, 对迄今为止测试的标准分类者来说是不健全的实践。 我们唯一的假设是, 我们可以得到一个公平的硬币。