As an integral part of the decentralized finance (DeFi) ecosystem, decentralized exchanges (DEXs) with automated market maker (AMM) protocols have gained massive traction with the recently revived interest in blockchain and distributed ledger technology (DLT) in general. Instead of matching the buy and sell sides, automated market makers (AMMs) employ a peer-to-pool method and determine asset price algorithmically through a so-called conservation function. To facilitate the improvement and development of automated market maker (AMM)-based decentralized exchanges (DEXs), we create the first systematization of knowledge in this area. We first establish a general automated market maker (AMM) framework describing the economics and formalizing the system's state-space representation. We then employ our framework to systematically compare the top automated market maker (AMM) protocols' mechanics, illustrating their conservation functions, as well as slippage and divergence loss functions. We further discuss security and privacy concerns, how they are enabled by automated market maker (AMM)-based decentralized exchanges (DEXs)' inherent properties, and explore mitigating solutions. Finally, we conduct a comprehensive literature review on related work covering both decentralized finance (DeFi) and conventional market microstructure.


翻译:作为分散化金融(DeFi)生态系统的一个组成部分,与自动市场制造者(AMM)协议的分散化交易所(DEXs)与自动化市场制造者(AMM)协议之间的分散化交易(DEXs)获得了巨大的牵引,最近对块链和分布式分类账技术(DLT)的兴趣在总体上重新抬头。自动化市场制造者(AMMs)不是对买卖双方进行配对,而是采用同行对集合法,并通过所谓的保护功能,从逻辑上确定资产价格。为了促进基于自动化市场制造者(AMM)的分散化交易所(DEXs)的改进和发展,我们创建了这一领域的第一个知识系统化。我们首先建立了一个通用的自动化市场制造者(AMM)框架(AMM),描述了整个系统经济,正式化了系统的州空间代表。我们然后利用我们的框架,系统地比较顶层自动化市场制造者(AMM)协议的机械化,说明其保护功能,以及滑坡和差异性损失功能。我们进一步讨论了安全和隐私问题,以及基于自动化市场制造者(AM)分散化的分散化交易所(DEXs)的固有财产是如何促成的,并探索减轻问题的解决方案。最后,我们进行了一个涉及与分散化的、分散化的市场文献。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
0+阅读 · 2023年2月12日
Arxiv
0+阅读 · 2023年2月11日
Arxiv
0+阅读 · 2023年2月9日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员