In this work, we provide an industry research view for approaching the design, deployment, and operation of trustworthy Artificial Intelligence (AI) inference systems. Such systems provide customers with timely, informed, and customized inferences to aid their decision, while at the same time utilizing appropriate security protection mechanisms for AI models. Additionally, such systems should also use Privacy-Enhancing Technologies (PETs) to protect customers' data at any time. To approach the subject, we start by introducing current trends in AI inference systems. We continue by elaborating on the relationship between Intellectual Property (IP) and private data protection in such systems. Regarding the protection mechanisms, we survey the security and privacy building blocks instrumental in designing, building, deploying, and operating private AI inference systems. For example, we highlight opportunities and challenges in AI systems using trusted execution environments combined with more recent advances in cryptographic techniques to protect data in use. Finally, we outline areas of further development that require the global collective attention of industry, academia, and government researchers to sustain the operation of trustworthy AI inference systems.
翻译:在这项工作中,我们为接近可信赖的人工智能(AI)推断系统的设计、部署和运行提供了行业研究观点,这些系统为客户提供了及时、知情和定制的推论,以协助其作出决定,同时为AI模型利用适当的安全保护机制。此外,这些系统还应利用隐私增强技术(PETs)来随时保护客户的数据。在处理这一问题时,我们首先介绍AI推断系统目前的趋势。我们继续阐述知识产权(IP)与这类系统中的私人数据保护之间的关系。关于保护机制,我们调查在设计、建造、部署和操作私人人工智能推断系统方面起到关键作用的安全和隐私构件。例如,我们强调在AI系统中利用可信赖的执行环境以及最近为保护使用中的数据而在加密技术方面取得的进展的机会和挑战。最后,我们概述了需要产业、学术界和政府研究人员全球集体关注的进一步发展领域,以维持可信赖的AI推断系统的运行。