We propose a framework for speeding up maximum flow computation by using predictions. A prediction is a flow, i.e., an assignment of non-negative flow values to edges, which satisfies the flow conservation property, but does not necessarily respect the edge capacities of the actual instance (since these were unknown at the time of learning). We present an algorithm that, given an $m$-edge flow network and a predicted flow, computes a maximum flow in $O(m\eta)$ time, where $\eta$ is the $\ell_1$ error of the prediction, i.e., the sum over the edges of the absolute difference between the predicted and optimal flow values. Moreover, we prove that, given an oracle access to a distribution over flow networks, it is possible to efficiently PAC-learn a prediction minimizing the expected $\ell_1$ error over that distribution. Our results fit into the recent line of research on learning-augmented algorithms, which aims to improve over worst-case bounds of classical algorithms by using predictions, e.g., machine-learned from previous similar instances. So far, the main focus in this area was on improving competitive ratios for online problems. Following Dinitz et al. (NeurIPS 2021), our results are one of the firsts to improve the running time of an offline problem.
翻译:我们提出了一个通过预测加速最大流量计算的框架。 预测是一种流动, 即向边缘分配非负流动值, 满足流量保护属性, 但不一定要尊重实际实例的边缘能力( 因为这些在学习时并不为人所知 ) 。 我们提出了一个算法, 以美元流流网络和预测流量计算出最大流量, 以美元( mneta) 时间计算最大流量, 美元( eta) 是一个预测值的错误, 即将非负流动值加到边缘, 即预测值与最佳流量值之间的绝对差值之和。 此外, 我们证明, 以流量网络的分布为条件, 能够有效地预测PAC- learn 将预期的美元流流流量错误降到最低。 我们的结果与最近关于学习推荐算法的研究相符, 目的是通过使用预测, 例如, 将预测的绝对值和最佳流量值之间的绝对差加起来, 。 因此, 从先前的竞争比率中, 机器- 机器- 学习到之前的竞争比率, 2021 问题的主要焦点远是改进。