A set of nonnegative matrices is called primitive if there exists a product of these matrices that is entrywise positive. Motivated by recent results relating synchronizing automata and primitive sets, we study the length of the shortest product of a primitive set having a column or a row with k positive entries, called its k-rendezvous time (k-RT}), in the case of sets of matrices having no zero rows and no zero columns. We prove that the k-RT is at most linear w.r.t. the matrix size n for small k, while the problem is still open for synchronizing automata. We provide two upper bounds on the k-RT: the second is an improvement of the first one, although the latter can be written in closed form. We then report numerical results comparing our upper bounds on the k-RT with heuristic approximation methods.
翻译:一组非负式矩阵如果存在这些矩阵的产物,则称为原始矩阵。根据与同步自动成型和原始组合相关的最新结果,我们研究了原始组合的短产品长度,该原始组合有一个列或行,带有 k正条目,称为 k- 交错时间( k- RT}),如果成套矩阵没有零行,没有零列,则称为原始矩阵。我们证明, k- RT 最多为线性 w.r. t., 矩阵大小为 n, 而对于小 k 来说, 问题仍然是要同步自动成型的。 我们在 k- RT 上边提供了两个上界。 我们在 k- RT 上界提供了两个上界, 前者是改进, 虽然后者可以以封闭的形式写成。 我们然后报告以超光学近比法比较 k- RT 上界的数字结果 。